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This article quantitatively reconciles crystallographic and mechanics approaches

to lattice refinement as part of X-ray diffraction procedures. The equivalence

between the refinement based on unit-cell parameters to that based on a

lattice deformation tensor is established from a fixed reference configuration.

Justification for the small strain assumption, commonly employed in X-ray

diffraction based stress analysis, is also derived. It is shown that relations based

on infinitesimal strains are correct to within an error of quadratic order in

strain. This error may be important to consider for high-precision or high-

strain experiments. It is hoped that these results are of use for facilitating

communication and collaboration between crystallography and experimental

mechanics communities, for studies where X-ray diffraction data are the

fundamental measurement.

1. Introduction

The increased use of X-ray diffraction experiments in support

of mechanics of materials studies (Winther et al., 2004; Mach et

al., 2010; Efstathiou et al., 2010) has led to increased overlap

between the communities of applied crystallography and

mechanics. Interactions among members of the community

suggest that there may be some benefit in relating certain

viewpoints native to crystallographers to those from a

mechanics background. For example, crystallographers typi-

cally consider the procedure of lattice refinement in terms of

unit-cell parameters and grain orientation, whereas mechan-

icians fix an appropriately chosen reference configuration to

the material, denoted by �, and resolve the linear transfor-

mation from the reference configuration to the current state.

This transformation is denoted by H�
1 and will be referred to

as the lattice deformation tensor. The fixed reference config-

uration approach is convenient to use for determining elastic

stresses, since in phenomenological continuum theories

constitutive formulas are described in terms of functions of H�

(Chadwick, 1999; Liu, 2002). Establishing the mathematical

equivalences and pointing out subtle differences between

these two approaches is one outcome of this article.

It is noteworthy that both methods of describing lattice

deformation are capable of characterizing finite strains.

Therefore, as a related topic we take this opportunity to

address the formal relationship between measures of finite

strains and measures of infinitesimal strains, the latter of which

are typically used in mechanics studies (Cullity, 1978; Noyan &

Cohen, 1987; Miller et al., 2008). By infinitesimal strains we

mean the use of formulas analogous in philosophy to

"ðNÞ ¼ �d=d0; ð1Þ

where " is a scalar strain measure, N denotes the normal to the

lattice plane under consideration, and �d = df � d0, where d0

and df are the initial and deformed planar spacings, respec-

tively. The planar spacing, d, is related to the diffraction angle,

�, by Bragg’s law, 2d sin � = n�, where � is the wavelength.

Equation (1) along with Bragg’s law thereby forms a frame-

work in which the infinitesimal strain tensor """ may be esti-

mated from the evolution of diffraction peak shifts �� (Cullity,

1978).

Most crystalline materials yield before reaching the levels of

distortion which would make infinitesimal strain measures

unacceptably erroneous compared with a finite deformation

measure such as H� . However, recent experiments are pushing

this envelope. Large elastic strains are possible for short-

timescale studies such as impact loading, where plastic flow is

absent (Kalantar et al., 2005; Hawreliak et al., 2011), or when

high hydrostatic pressures are imposed, such as those attained

in diamond anvil cell experiments (Jayaraman, 1983; Yama-

naka et al., 2001; Katrusiak, 2008). Although to date the error

in using infinitesimal kinematic2 measures has been accep-

table, since typically j"j < 1%, finite deformation measures

may become important to consider as experimental techni-

ques enable large-strain studies. Similarly, as higher experi-

mental resolutions are attained, these issues may be important

to consider, since precision is brought into a regime where

large-strain details are significant.

We present this study in two primary sections. In x2 we

relate the approaches to lattice refinement based on unit-cell

parameters to that based on a fixed reference configuration.

1 In the phenomenological plasticity literature, H� is also commonly referred
to as Fe. The choice of designation H� follows the conventions of Gupta et al.
(2011).

2 In this article the term kinematic will be used to connote the idea of motion
or deformation, as opposed to its definition with respect to the kinematic
theory of X-ray diffraction.
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We give the mathematical system of equations which may be

solved to relate one set of refinement parameters to the other.

Then in x3 we describe the application of the fixed reference

approach to X-ray diffraction data by arriving at an equation

which expresses the evolution of reciprocal-lattice vectors

under finite lattice deformations. Using this result we are able

to quantify the error made in using infinitesimal kinematic

relations by computing the leading order in strain expansion

of the finite deformation description.

2. Comparison of lattice refinement procedures

The primary outcome of many X-ray diffraction experiments

is to determine the state of lattice deformation in individual

crystal grains. For these studies, lattice refinement refers to the

stage of analysis where initial orientations have been deter-

mined by an indexing method, but where more precise infor-

mation about the lattice state is sought. As noted in the

Introduction, the approaches taken for this procedure differ

between crystallography and mechanics researchers, although

both are capable of describing finite strains. In this section we

will show how these methods of lattice refinement are related

to one another, and highlight potential aspects to consider

when using one framework or the other.

In overview, the typical methodology for crystallographers

would be to view lattice refinement as the determination of the

unit-cell parameters (six parameters), along with an orienta-

tion of the crystal (three parameters), for a total of nine

parameters. A mechanician would approach the same problem

by determining the lattice deformation tensor from a fixed

reference configuration (nine components). For example, the

fixed reference configuration may be generated by fixed unit-

cell parameters at a convenient state, typically the ambient

unstressed state of the crystal.

For simple lattices we can explicitly link the two approaches.

The extension to non-simple lattices is straightforward and the

required computations are evident from the analysis to follow.

For another perspective, see the review by Adams & Olson

(1998).

2.1. Interpretation of the unit-cell approach

To explicitly compare the two methods of lattice refinement

under consideration we require a common point of reference;

for this we find it easier to translate the unit-cell approach into

the fixed reference language. To achieve this we first consider

a reference cube aligned with a Cartesian basis e1; e2; e3. For

later use, the reciprocal vectors in this configuration are trivial

owing to orthonormality of the Cartesian system; we have

e�1 ¼ e1; e�2 ¼ e2; e�3 ¼ e3; ð2Þ

where e�i ; i = 1, 2, 3, are the reciprocal basis vectors to ei.

Throughout this article, reciprocal vectors will be distin-

guished by the notation ð�Þ�. Next, the reference cube is

deformed by a structural map, e.g. a linear transformation Hs,

which takes the reference cube into its configuration where

unit-cell parameters are conventionally defined (see Fig. 1).

Now consider the evolution of the cube axes e1; e2; e3 under

the action of the structural map, Hs. The new configuration is

defined by the three length changes of the cube axes, a; b; c,

and the internal angles of the cell edges, �; �; � (Callister,

2000). We construct this deformation according to the

following definitions,

Hse1 � a ¼ ae1; ð3Þ

Hse2 � b ¼ berð�; e1; e2Þ; ð4Þ

Hse3 � c ¼ cĉcð�; �; �Þ; ð5Þ

where a; b; c are the unit-cell edges after the structural map,

and where we are using the assignment of the polar coordinate

unit vector er defined by

erð�; e1; e2Þ ¼ cos �e1 þ sin �e2: ð6Þ

In (5) we are using ĉc = c=jcj to denote the unitization opera-

tion. This notation will be used again later in this article. The

Cartesian representation for c, which is defined off the internal

angles �; �; �, is lengthy to compute; details are provided in

Appendix A [see equation (54)]. Also consult Neustadt et al.

(1968) for an alternative point of view on this computation.

The relations defining the structural map in equations (3)–(5)

have a generalized interpretation, commonly encountered in

mechanics, which encodes any convective mapping between

configurations. To show this, we first assign a basis to a refer-

ence configuration Gi, i = 1, 2, 3, where Gi are, here, inter-

preted as being fixed to the lattice, e.g. they are (direct) lattice

vectors. Corresponding to Gi we can compute the reciprocal

basis G�i , i = 1, 2, 3, with the property

Gi �G
�
j ¼ �ij: ð7Þ

Under a deformation by H, the mapped basis, gi, is defined by

gi ¼ HGi; i ¼ 1; 2; 3: ð8Þ

Therefore, by inspection, we can use (8) with (7) to deduce

that H has the representation
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Figure 1
Depiction of the lattice refinement procedure using six unit-cell
parameters and three rotation parameters to arrive at the physical
configuration of the crystal where diffraction is measured. The final
state based on evolution from the initial cube is given by the mapping
Hcube = R̂RH s.



H ¼ gi �G�i ; ð9Þ

with repeated indices indicating the summation convention is

in effect, here and for the rest of the article. The tensor

product � is defined operationally by ðq� rÞs � qðr � sÞ for

vectors q; r; s. To demonstrate (9), consider the sequence HGj

= ðgi �G�i ÞGj = gi�ij = gj, in which we have used (7).

Now returning to the consideration of equations (3)–(5),

recall that equation (2) defines the reciprocal basis G�i ð� e�i Þ

with respect to the reference cube configuration. Then we can

apply (9) and (8) to (3)–(5), observe that a � g1, b � g2 and

c � g3, and see that H s has the representation

H s ¼ a� e1 þ b� e2 þ c� e3

¼ ae1 � e1 þ berð�; e1; e2Þ � e2 þ cĉcð�; �; �Þ � e3: ð10Þ

As an example we display equation (10) in matrix form for the

general triclinic case. Resolving on the Cartesian basis feig

gives

Hs ¼

a b cos � c cos�

0 b sin � cðcos�� cos� cos �Þ= sin �

0 0 cð1þ 2 cos� cos� cos � � cos2 �� cos2 �� cos2 �Þ1=2= sin �

2
64

3
75

ei�ej

ð11Þ

where ei � ej denotes the tensorial basis being used. Details of

the computations leading to (11) are provided in Appendix A.

So far we have only related unit-cell parameters to the

structural map of a convenient artificial reference cube. To

complete the lattice refinement problem we must be able to

account for the orientation of the physical configuration of the

lattice when the X-ray observation is made. In the mechanics

literature the physical configuration is also called the current

configuration; this usage will prevail in the rest of this article.

Therefore, to go from the structural map configuration to an

arbitrary current configuration, an additional rotation opera-

tion, denoted by R̂R 2 Oð3;RÞ, is required. This rotation tensor

may be parametrized by three coordinates, e.g. Euler angles or

angle axis parameters. Finally, the full set of parameters

characterizing the deformation from the reference cube to the

current configuration are summarized by

Hcubeðr1; r2; r3; a; b; c; �;�; �Þ ¼

R̂Rðr1; r2; r3ÞH sða; b; c; �; �; �Þ; ð12Þ

where r1; r2; r3 are, for example, the angle axis parameters for

a rotation. The lattice refinement procedure then occurs on

the array r1, r2, r3, a, b, c, �, �, �; that is, these values are

modified to match experimental diffraction data via an algo-

rithm such as least squares. The entire process is depicted in

Fig. 1, where the actions of the structural map H s and rotation

R̂R are illustrated, arriving at the final configuration where the

diffraction measurement is made.

2.2. Mechanistic approach

In this approach the same problem of lattice refinement is

accomplished in a slightly different way, by first fixing the

lattice parameters at a natural reference state, e.g. assign a0;

b0, c0, �0, �0, �0. Using (10), these parameters then generate a

fixed structural map of the cube, denoted H s;0. The result of

the action of H s;0 on the cube defines what is referred to as the

reference configuration, denoted �. The parameters a0, b0, c0,

�0, �0, �0 are usually obtained from experiments performed

when the material is in its ambient stress-free state. Then, with

an eye toward constitutive equations, stresses are naturally

determined by deformations of the lattice from this fixed

reference state. Deformation tensors from the reference � are

denoted by H� to emphasize the dependence on the config-

uration �. For physical processes, H� will be invertible, so that

the polar decomposition theorem applies. Thus there is an

orthogonal tensor R and a symmetric, positive definite stretch

tensor U such that

H� ¼ RU: ð13Þ

The orthogonal tensor R accounts for the rotation of the

lattice, and the stretch tensor U represents lattice distortion.

Looking ahead, in x3 more details will be given showing how

U is related to the infinitesimal strain tensor """. For example,

one aspect they differ in is that, in an ambient state, U = I,

while, in the same state, """ = 0. Instead of equation (13) we

could also have the equivalent formulation H� = VR, where

V = RURT. See Bernier et al. (2011) for further discussion and

crystallographic considerations of employing the right (RU)

or left (VR) decomposition in algorithms. The map from the

fixed reference configuration, �, to the current configuration

may then be written as

H�ðr1; r2; r3;U11;U22;U33;U23;U13;U12Þ ¼

Rðr1; r2; r3ÞUðU11;U22;U33;U23;U13;U12Þ; ð14Þ

where R is parametrized by three coordinates, and the stretch

tensor is parametrized by six coordinates owing to symmetry,

U = UT. Lattice refinement then occurs on the array r1, r2, r3,

U11, U22, U33, U23, U13, U12. The entire process, starting from
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Figure 2
Depiction of the lattice refinement procedure based on evolution from a
fixed reference configuration, �. The initial structural map H s;0 is fixed
and lattice refinement consists of obtaining the nine components of a
deformation tensor from the reference state, H�. The final state based on
evolution from the initial cube is given by the mapping Hcube = H�H s;0.



the initial cube, is shown in Fig. 2, which shows the action of

the fixed reference structural map H s;0, followed by H� to

achieve the final state.

2.3. Comparison of crystallographic and mechanistic
approaches

The approaches so far described (unit cells, fixed reference)

can now be related to one another by considering the

mappings from the initial cube to the final state. Since such

mappings must agree on the geometry of the lattice in the final

configuration, either approach should give the same result.

Therefore we have the relation

Hcube ¼ H�H s;0 ¼ R̂RH s: ð15Þ

The equivalence is illustrated graphically by comparing Figs. 1

and 2. To more explicitly demonstrate, let us assume we are

given (H s; R̂R) from fitting the unit-cell parameters and rota-

tion. Recall we are using equation (11) to generate H s from

the unit-cell parameters. Then we can use (15) to compute H� =

R̂RHsH
�1
s;0 , and thereby obtain the lattice deformation tensor.

The solution to the polar decomposition problem for rotation

and stretch factors of H� can be computed by a variety of

methods which we do not discuss here [see Liu (2002), p. 6, for

an example]. Conversely, given H�;H s;0, we can solve for the

lattice parameters by manipulating (15) and performing the

required vector projections on (10),

a � e1 ¼ a ¼ Hse1 � e1 ¼ R̂R
T
H�H s;0e1 � e1; ð16Þ

b � e1 ¼ b cos� ¼ Hse2 � e1 ¼ R̂R
T
H�H s;0e2 � e1; ð17Þ

b � e2 ¼ b sin � ¼ Hse2 � e2 ¼ R̂R
T
H�H s;0e2 � e2; ð18Þ

c � e1 ¼ c cos � ¼ H se3 � e1 ¼ R̂R
T
H�H s;0e3 � e1; ð19Þ

c � e2 ¼ H se3 � e2 ¼ R̂R
T
H�H s;0e3 � e2; ð20Þ

c � e3 ¼ H se3 � e3 ¼ R̂R
T
H�H s;0e3 � e3: ð21Þ

In (20) and (21) we have omitted the expressions for c � e2,

c � e3 for reasons of appearance; these terms are recorded in

the i; j = (2, 3), (3, 3) components of the matrix representation

of H s in (11). The system of equations (16)–(21) can then be

solved for a, b, c, �, �, � in terms of H�, R̂R, H s;0. Some assis-

tance in solving equations (17)–(21) comes from employing

relations like

b ¼ jbj ¼ ðH se2 �H se2Þ
1=2; ð22Þ

c ¼ jcj ¼ ðH se3 �H se3Þ
1=2: ð23Þ

Therefore we have shown that the results of a refinement by

one method can be used to solve for the other set of para-

meters. However, there are some subtle distinctions we now

discuss. Noting the polar decomposition theorem, equation

(13), and examining equation (12), we can see that adjusting

the lattice parameters a, b, c, �, �, � induces elements of both

stretch and rotation, since H s is not generally symmetric, see

equation (11). This is important to note because it can be

shown that stresses arise only due to stretching through U, and

not due to rigid-body rotations (Chadwick, 1999). Therefore

there can be some quantitative differences in the results of the

two approaches, particularly when considering uncertainty

analysis in stress studies (Edmiston et al., 2011).

In any case, hopefully this discussion is useful for facilitating

communication and joint activity between crystallography and

mechanics communities in the future.

It is important to recognize that methods using unit-cell

parameters or deformation tensors to describe the lattice state

are each capable of accurately quantifying large strain kine-

matics. In many studies, however, it has been common to use

infinitesimal strain tensors, """, to describe lattice distortion. In

the next section we use the fixed reference description of

lattice deformations to quantify the error made in using infi-

nitesimal kinematics along the lines of equation (1). To do this

we first derive a relation for the evolution of reciprocal-lattice

vectors which is analogous to equation (8) for lattice vectors.

This relation should be useful for implementing lattice

refinement procedures using the finite deformation measures

H� into X-ray diffraction analysis codes.

3. Error in small strain estimate

3.1. Reciprocal vector kinematics

To obtain the error in the small strain estimate we first

derive an expression for the evolution of reciprocal-lattice

vectors under finite lattice deformations, H . Here and for the

rest of this section, we suppress the explicit designation of the

reference configuration � from quantities such as H� for

convenience. The reciprocal-lattice construction arising from

the classical theory of X-ray diffraction is convenient and

powerful (Guiner, 1963; Azaroff et al., 1974; Cullity, 1978).

Using this, we can analyze X-ray diffraction patterns of

strained crystals by simply considering geometric aspects of

the reciprocal-lattice vectors. We now work out the details.

Recall that equation (8) relates lattice vectors in a deformed

and reference configuration, gi and Gi, respectively, through

the action of H. We can derive an analogous relation for

deformed and reference reciprocal-lattice vectors, without

introducing formal notions of differential geometry as follows.

Denote g�i , G�i to be the reciprocal vector basis corresponding

to gi, Gi, respectively. Note that the identity I may be written

I ¼ gi �G�i ¼ gi � g�i : ð24Þ

This is evident by observing that, for example, IGi = Gi, and

noting the requirement between direct and reciprocal vectors,

equation (7). With equation (24), the definition of the inverse

deformation H�1 as HH�1 = I, and with H represented by

equation (9), we have, by inspection,

H�1
¼ Gi � g�i : ð25Þ

We can then compute the transpose of H�1 easily from

equation (25), giving
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H�T ¼ g�i �Gi: ð26Þ

Therefore, we have the useful result

H�TG�i ¼ g�i : ð27Þ

To see this, consider the sequence H�TG�i = (g�j � GjÞG
�
i =

g�j �ij = g�i , where we have used equation (7). This result is

analogous to equation (8), but here we describe the evolution

of reciprocal vectors under deformation, rather than that of

lattice vectors.

Noting the arbitrariness of the choice of the reference

lattice vectors Gi which began the derivations (i.e. there are

many equivalent unit cells which generate the same crystal

lattice), we can conclude that

H�TG�ðiÞ ¼ g�ðiÞ ð28Þ

holds for any associated reference and deformed reciprocal

vectors G�ðiÞ, g�ðiÞ. Here ðiÞ is a bookkeeping index into the set of

all reciprocal-lattice vectors. For example, by enumerating the

hkl indices, we assign G�ðiÞ to correspond to the ith hkl value.

Equation (28) thus forms the foundation for generating resi-

duals in a least-squares implementation, whose solution gives

a best-fit estimate of the grain-averaged finite deformation

tensor H. For further details this was carried out on experi-

mental data by Edmiston et al. (2011).

We now consider the typical expressions used for infinite-

simal strain analysis in the literature, which differ in appear-

ance from equation (28). Common methodologies for strain

analysis take fundamental relation

""" � NðiÞ � NðiÞ ¼ �dðiÞ=d
ðiÞ
0 ; ð29Þ

where jj"""jj � 1 is the infinitesimal strain tensor, NðiÞ is the

normal vector to the ith lattice plane, and �dðiÞ � d
ðiÞ
f � d

ðiÞ
0 is

the change in planar spacing for the ith reflection. Here d
ðiÞ
f is

the deformed spacing and d
ðiÞ
0 is the initial spacing. In (29)

the inner product on tensors is defined operationally by

""" � NðiÞ � NðiÞ = NðiÞ � """NðiÞ. Then a least-squares algorithm is

formed from residuals based on (29). Although one can

understand the motivation of (29), upon critical examination

these kinematics are objectionable from the outset. Tradi-

tional definitions of strain tensors do not operate on planar

normals, but on tangent vectors or line elements, and these

have different behavior under the same transformation. For

example, consider the Lagrangian strain tensor given by

E ¼ ð1=2Þ

�
HTH � I

�
: ð30Þ

Noting from (8) that H operates on line elements, equation

(30) indicates that E likewise operates on line elements.

Instead, the appropriate kinematic relationship for planar

normals is obtained from Nanson’s formula (Chadwick, 1999),

ðdet HÞH�TNðiÞ ¼ 	ðiÞnðiÞ;

where nðiÞ is the deformed unit normal, 	ðiÞ = ðC�1
� NðiÞ�

NðiÞÞ1=2 is the area ratio, and C � HTH = U2.

To be clear, we will not, in the end, seriously object to the

use of (29) for small strain studies, which is the most common

situation to date. We point out the deficiency should experi-

mental conditions advance to the point where using (29)

would give distinguishable errors, or for the large elastic strain

cases noted in the Introduction. In the next section we will

show that (28) reassuringly reduces to (29) upon linear

approximation. We find these computations useful to eluci-

date, since this equivalence may not be evident upon first

comparing (29) and (28).

3.2. Linear approximation procedure

We now derive the error made when replacing the general

kinematics given by (28) with the approximate kinematics in

(29). The linearization method shown here is less rigorous

than the general approach given by Hughes & Pister (1978),

but gives the same results [see also Section D of Yavari (2008)

for other recent applications of linearization methods]. The

result of the procedure is that the kinematics of (29) are

correct to within an error of order """2. For a rough idea of the

meaning of this, let us assume we have strains of """ ’ 1% =

0.01, with error �""" = """2 ’ 1	 10�4. Then for a material with

elastic modulus E ’ 100 GPa, the nominal stress level would

be 
 ’ 1 GPa and the error in the stress would be �
 ’
10 MPa. This error is currently below the magnitude of errors

arising from other sources such as precision uncertainty

(Edmiston et al., 2011); however, as instrumentation and data-

analysis algorithms improve, this may not always be the case.

From another perspective, at the higher stress levels which

may be obtained in diamond anvil cell or shock experiments,

where 
 ’ 10 GPa, this error may also be detectable.

We begin by considering, with the relative change in spacing

for a given lattice plane, the right-hand side of (29),

�d

d0

¼
d� d0

d0

: ð31Þ

In (31) and all the following equations, the superscript ðiÞ

designating the lattice plane will be suppressed to clean the

notation. Next we employ the finite deformation kinematics of

(28) to linearize (31) about the reference state. We have the

typical requirements of R = I, and use a simple expansion for

the stretch,

U ¼ I þ """: ð32Þ

In practice we obtain R = I by effectively rotating the refer-

ence configuration �. To compute �d=d0 from (31) we expand

the planar spacing in the deformed configuration, d, giving

d ¼ d0 þ
@d

@"

����
"¼0

� """þOð"""2Þ: ð33Þ

Using (33) in (31) gives the leading order expansion for the

relative change in spacing as

�d

d0

¼ d�1
0

@d

@"

����
"¼0

� """þOð"""2
Þ: ð34Þ

Next, it can be shown that lattice planar spacing d is related to

the magnitude of a reciprocal-lattice vector g� by the equation
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ðdÞ
�1
¼ jg�j: ð35Þ

Substitution of (28) into (35) gives

d ¼ jg�j
�1
¼

�
H�TG� �H�TG

��1=2

¼

�
C�1
�G� �G�

��1=2

: ð36Þ

For later use we note that in the reference state similar

computations give d0 = jG�j�1. Then using (36) with the chain

rule we compute

@d

@"kl

¼ �
1

2

� �
1

ðC�1
�G� �G�Þ3=2

"
@ðC�1

ÞmnG�mG�n
@"kl

#
; ð37Þ

where G�m � G� � em is notation for projection on the Carte-

sian basis. Similarly ðC�1
Þmn = C�1

� em � en. Next, we use C =

U2, the initial expansion for the stretch in (32), and the result

ðI þ """Þ�1 = I� """ + Oð"""2Þ (Liu, 2002, p. 261), giving

C�1
¼ I � 2"""þOð"""2

Þ: ð38Þ

Then substitution of (38) into (37) and evaluating at """ = 0 so

that C ’ I gives

@d

@"kl

����
""¼0

¼
1

ðjG�jÞ3
G�kG�l : ð39Þ

Now we write G� = jG�jĜG
�

where ĜG
�

is the unit vector asso-

ciated with G�. The properties of reciprocal-space geometry

are such that ĜG
�

= N, where N is the unit normal to the lattice

plane. Using this property, (39) and d0 = jG�j�1 in (34) give,

after simplifications,

�d

d0

¼ """ � N� NþOð"""2Þ: ð40Þ

So we have shown that the finite deformation expression of

(28) reduces to the conventional expression of (29) upon a

linearization procedure. The infinitesimal relation in (29) is

therefore demonstrated to be correct to within an error of

Oð"""2Þ. The detailed form of the error term is a complicated

function and is too lengthy to report here. Should there be

desire to compute these higher-order terms by continuing the

expansion, we suggest simply using the finite deformation

framework from the beginning.

4. Conclusion

In this study we have derived the relations between the

descriptions of lattice distortion based on unit-cell parameters

and that based on a lattice deformation tensor relative to a

fixed reference configuration, �. This was done to establish the

equivalences of the two approaches in order to assist in

communications and collaborations between communities. We

pointed out that the lattice deformation tensor approach

should be preferred for studies where constitutive quantities

such as stress tensors are eventually required. This is because

the constitutive formula for phenomenological continuum

theories are explicitly expressed in terms of tensor functions of

H�; in addition, in this framework the uncertainties for lattice

stretch and rotation are naturally decoupled (Edmiston et al.,

2011).

We have also derived the evolution relation for reciprocal-

lattice vectors under finite lattice deformations, H . This result

enabled the demonstration that the finite deformation rela-

tions of (28) reduce to the more commonly used infinitesimal

kinematic relations of (29) upon linearization about the

reference state. The error term in using the infinitesimal

kinematic relations was shown to be Oð"""2Þ. Recognition of this

error when using small strain kinematics is becoming more

important to consider as experimental precisions improve and

as higher lattice strain levels are probed. The implementation

of (28) into analysis codes is a suggested course of action to

avoid this error, should there be sufficient need.

APPENDIX A
Derivation of Cartesian representation for unit-cell
geometry

In this section we compute the details of the derivation of the

structural map reported in equation (11); see also Neustadt et

al. (1968) for an alternative approach. We pick up the devel-

opment from equation (5). Recall we adopt the convention for

the mapped cell edges as

a ¼ ae1; b ¼ berð�; e1; e2Þ; c ¼ cĉcð�; �; �Þ;

where from the definition of the internal angles �, � we have

ĉc � âa � cos�, ĉc � b̂b � cos�. We require an expression for c,

hence ĉc, on the Cartesian basis e1, e2, e3. To achieve this, we

find it useful to consider the intermediate step of constructing

a basis which is reciprocal to that defined by

h1 ¼ e1; h2 ¼ erð�; e1; e2Þ; h3 ¼ e3: ð41Þ

Note that h1 = âa and h2 = b̂b. Denote the corresponding reci-

procal basis by h�i . Next we make use of the result of equation

(24); we can write

ĉc ¼ Iĉc ¼ ðĉc � hiÞh
�
i ¼ ðĉc � h

�
i Þhi; ð42Þ

relations which hold for any vector. Expanding (42)2, we have

the representation

ĉc ¼ ðĉc � h1Þh
�
1 þ ðĉc � h2Þh

�
2 þ ðĉc � h3Þh

�
3

¼ cos�h�1 þ cos�h�2 þ ĉc3h�3; ð43Þ

where we have used h1 = âa and h2 = b̂b along with the definition

of the unit-cell angles �, �. The unknown component ĉc3 can be

obtained from the unit vector property, jĉcj = 1, which we now

show. Using (43) we have

1 ¼ jĉcj2 ¼ cos2 �ðh1 � h
�
1Þ þ cos2 �ðh�2 � h

�
2Þ þ ĉc

2
3

þ 2 cos � cos�ðh1 � h2Þ; ð44Þ

where we have used h�1 � h
�
3 = h�2 � h

�
3 = 0, which will be justified

shortly. After some algebra, we obtain

ĉc3 ¼
�
1� cos2 �ðh�1 � h

�
1Þ � cos2 �ðh�2 � h

�
2Þ

� 2 cos � cos �ðh�1 � h
�
2Þ
�1=2
: ð45Þ
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We now construct the reciprocal basis h�i to complete the

specification of c. Using (42)3 applied to h�i we have

h�i ¼

�
h�i � h

�
j

�
hj ¼ h�ijhj; ð46Þ

where h�ij = h�i � h
�
j is the reciprocal metric tensor. It is related

to the metric tensor h�ij = hi � hj by the relation ½h�ij
 = ½hij

�1,

where the bracket notation is used to emphasize matrix

representations. To see this, use the sequence �ik = h�i � hk =

h�ijhj � hk = h�ijhjk. Then, by the uniqueness of matrix inverses,

½h�ij
 � ½hij

�1. Next we explicitly compute the metric hij in

matrix form as

½hij
 ¼

h1 � h1 h1 � h2 h1 � h3

h2 � h1 h2 � h2 h2 � h3

h3 � h1 h3 � h2 h3 � h3

2
4

3
5 ¼ 1 cos � 0

cos � 1 0

0 0 1

2
4

3
5;
ð47Þ

where we have used (41) and (6). The reciprocal metric h�ij is

obtained by taking the matrix inverse, giving

½h�ij
 ¼ ½hij

�1
¼

1=ð1� cos2 �Þ � cos �=ð1� cos2 �Þ 0

� cos �=ð1� cos2 �Þ 1=ð1� cos2 �Þ 0

0 0 1

2
64

3
75: ð48Þ

Use of the entries of (48) in (46) with (41) gives the reciprocal

bases fh�i g as

h�1 ¼

�
1

1� cos2 �

!
e1 þ

�
� cos �

1� cos2 �

!
erð�; e1; e2Þ; ð49Þ

h�2 ¼

�
� cos �

1� cos2 �

!
e1 þ

�
1

1� cos2 �

!
erð�; e1; e2Þ; ð50Þ

h�3 ¼ e3: ð51Þ

Now to complete (45) we require

h�1 � h
�
2 ¼ h�12 ¼

� cos �

1� cos2 �
;

h�1 � h
�
1; h�2 � h

�
2 ¼ h�11; h�22 ¼

1

1� cos2 �
:

ð52Þ

where we have used (48). These results simplify (45) to

ĉc3 ¼
1

sin �

	 1þ 2 cos� cos� cos � � cos2 �� cos2 �� cos2 �
� �1=2

: ð53Þ

Finally, we have

c ¼ cĉc ¼ c cos �h�1 þ c cos �h�2 þ cĉc3h�3; ð54Þ

where ĉc3 is given by (53).

We are now able to compute H s from (10). Recall that

H s ¼ a� e1 þ b� e2 þ c� e3:

We compute the matrix representation of H s from Hij =

ei �H sej by using (49)–(51) in equation (54), along with

equations (3), (4) and (6). We obtain

Hs ¼

a b cos � c cos�

0 b sin � cðcos �� cos� cos �Þ= sin �

0 0 cð1þ 2 cos� cos� cos � � cos2 �� cos2 �� cos2 �Þ1=2= sin �

2
64

3
75:

This matches accepted results from the literature (Bernier et

al., 2011).
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Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344 (LLNL-
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